Option prices as probabilities / by Cristophe Profeta, Bernard Roynette, Marc Yor
- 作者: Profeta, Cristophe.
- 其他作者:
- 其他題名:
- Springer eBooks
- 出版: Berlin, Heidelberg : Springer-Verlag Berlin Heidelberg 2010
- 叢書名: Springer finance
- 主題: Options (Finance)--Prices--Mathematics. , Distribution (Probability theory) , Probability Theory and Stochastic Processes. , Mathematics. , Quantitative Finance.
- ISBN: 9783642103957 (electronic bk.) 、 9783642103940 (paper)
- URL:
電子書
-
讀者標籤:
- 系統號: 005161527 | 機讀編目格式
館藏資訊
Discovered in the seventies, Black-Scholes formula continues to play a central role in Mathematical Finance. We recall this formula. Let (B ,t? 0; F ,t? 0, P) - t t note a standard Brownian motion with B = 0, (F ,t? 0) being its natural ?ltra- 0 t t tion. Let E := exp B? ,t? 0 denote the exponential martingale associated t t 2 to (B ,t? 0). This martingale, also called geometric Brownian motion, is a model t to describe the evolution of prices of a risky asset. Let, for every K? 0: + ? (t) :=E (K?E ) (0.1) K t and + C (t) :=E (E?K) (0.2) K t denote respectively the price of a European put, resp. of a European call, associated with this martingale. Let N be the cumulative distribution function of a reduced Gaussian variable: x 2 y 1 ? 2 ? N (x) := e dy. (0.3) 2? ?? The celebrated Black-Scholes formula gives an explicit expression of? (t) and K C (t) in terms ofN : K ? ? log(K) t log(K) t ? (t)= KN ? + ?N ? ? (0.4) K t 2 t 2 and ? ?