資料來源:
三民書局
Applied longitudinal data analysis for medical science : a practical guide / Jos W.R. Twisk.
- 作者: Twisk, Jos W. R., 1962-
- 其他題名:
- Applied longitudinal data analysis for epidemiology
- 出版: Cambridge, UK : Cambridge University Press 2023.
- 主題: Epidemiology--Research--Statistical methods. , Epidemiology--Longitudinal studies. , Epidemiology--Statistical methods. , Longitudinal method. , Longitudinal Studies. , Data Analysis. , Data Interpretation, Statistical. , Models, Statistical.
- 版本:3rd ed.
- ISBN: 978-1-009-28804-0 (hbk.) :: GBP100.00 、 978-1-009-28803-3 (pbk.)
- 一般註:Preceded by Applied longitudinal data analysis for epidemiology / Jos W.R. Twisk. Second edition. 2013.
- 書目註:Includes bibliographical references and index.
-
讀者標籤:
- 系統號: 005291614 | 機讀編目格式
館藏資訊
Discusses methods available for longitudinal data analysis in non-technical language, allowing readers to apply techniques easily to their work. Aimed at non-statisticians and researchers working in medical science and utilising longitudinal studies, the interpretation of the results of various methods of analysis is emphasised.
摘要註
"In this book the most important methods available for longitudinal data analysis are discussed. This discussion includes simple methods such as the paired t-test and summary statistics, and also more sophisticated methods such as generalized estimating equations and mixed model analysis. A distinction is made between longitudinal data analysis with continuous, dichotomous, categorical and other outcome variables"--
內容註
Continuous outcome variables -- Continuous outcome variables : regression based methods -- Modelling of time -- Models to disentangle the between-and within-subjects relationship -- Causality in observational longitudinal studies -- Dichotomous outcome variables -- Categorical and count outcome variables -- Outcome variables with floor or ceiling effects -- Analysis of longitudinal intervention studies -- Missing data in longitudinal studies -- Sample size calculations -- Software for longitudinal data analysis.